

Embryology Of Gastrointestinal Tract (Foregut & Midgut

Dr. Khadeeja S. Mahdi

University Of Basrah

College Of Medicine

Department Of Human Anatomy

Khadeeja.sami@uobasrah.edu.iq

- **1. Development derivatives of midgut and hindgut**
- 2. Development derivatives of primitive gut tube (pharynx. esophagus stomach, intestine) •
- 3. Rotation of gut •

Embryology of G.I.T.:

Endoderm :

Epithelial lining & specific cells of glands (liver, pancreas).

Visceral Mesoderm:

Lamina propria, muscularis mucosa, submucosa, muscularis externa, serosa, stroma of glands, mesentery & blood vessels.

Ectoderm:

Enteric nervous system.

Primitive Gut Tube :

- ➢During cranio-caudal &lateral
- folding of the embryo.
- 1) Foregut.
- 2) Midgut.
- 3) Hindgut.

Foregut :

1) Oral cavity, pharynx, esophagus

2)Stomach ,Upper Duodenum

3)Liver

4)Gallbladder & bile ducts

5)Pancreas

Midgut : rest of duodenum till distal1/3 of transverse colonHindgut : from distal1/3 of transverse colon till upper part of anal

canal.

Falciform ligament which connect liver to ventral body wall.

➤The Free margin of falciform ligament contain umbilical vein which obliterated after birth.

Esophagus :

□It developed at 4th wk .

- □ Foregut caudal to pharyngeal gut started budding of respiratory diverticulum (lung bud) ventrally then tracheoesophageal septum form to separated lung bud from esophagus.
- □ at first time the esophagus is short but because descent of heart & lung it rapidly

lengthen.

≻It arised at <u>4th wk</u> of fetal life.

➢Its appearance & position is greatly changed during

development .why?

 \succ The positional changes assumed when stomach rotates around the

longitudinal & anteroposterior axis.

Figure 13.8 A, B, and C. Rotation of the stomach along its longitudinal axis as seen anteriorly. D and E. Rotation of the stomach around the anteroposterior axis. Note the change in position of the pylorus and cardia.

When stomach rotates 90° around longitudinal axis :

- oLT side of stomach be anteriorly (LT vagus be anterior)
- \circ RT side of stomach be posteriorly (RT vagus be posterior)
- •Original posterior wall grow faster than Ventral anterior so appears greater curvature & lesser curvature.

O Dorsal mesogastrium move to LT & leaving a space behind stomach <u>called</u>
 <u>lesser sac</u> but ventral mesogastrium move to RT.

Figure 13.8 A, B, and C. Rotation of the stomach along its longitudinal axis as seen anteriorly. D and E. Rotation of the stomach around the anteroposterior axis. Note the change in position of the pylorus and cardia.

When stomach rotates around anteroposterior axis :

(cut edge) oAt 1st both cardiac end & pyloric end ventral mesentery (cut edge) of stomach lie in mid line but after this rotation cardiac end move down & LT 35 days 28 days but pyloric end moved up & RT. cardiac notch dorsal ventral •After this 2 rotations the stomach fundus mesentery mesentery (cut edge) (cut edge) assumed final position. lesser greater curvature curvature

dorsal mesentery

56 days

Duodenum:

Its junction of both:

Terminal part of foregut& cephalic part of mid gut.

When stomach rotate the duodenum also rotate to RT as <u>C</u> shape. This rotation cause swing of duodenum from initial midline to RT side abdominal cavity.

Duodenum & head of pancreas press against dorsal body wall so dorsal mesoduodenum fused & disappears except in 1st part of duodenum.

At end, rest of duodenum &
head, neck & body of pancreas is
fixed secondary retroperitoneally.

Development of Mid gut :

Started at $5^{\text{th}}wk$.

Connection :

 \circ with dorsal abdominal wall by a mesentery.

•With yolk sac by yolk stalk (vitelline duct).

➤ Mid gut : rest of duodenum till proximal 2/3 transverse colon is involved

Rapid elongation of gut & its mesentery will form primary intestinal loop :

<u>1)Its apex</u> is in connection with yolk sac by vitelline duct .

2) <u>Cephalic limb</u> of loop developed (rest of duodenum, jejunum and part of ileum).

3) <u>Caudal part</u> of loop developed (the rest of ileum till proximal 2/3 transverse colon).

2) Rotation of the Mid gut:

► It rotates around an axis formed by

superior mesenteric artery anticlockwise

➢Rotation occurs during herniation about 90°.

➤ As well as during return of intestinal loops into abdominal cavity rotates 180°.

3) Retraction of Herniated Loops: *Started at 10th week.

≻Herniated intestinal loops return to abdominal cavity, why?

≻Regression of mesonephric kidney.

≻Reduced growth of the liver.

> Expansion of abdominal cavity.

*The 1st part to reenter abdominal cavity is jejunum comes to lie on LT side.

*The later returning loops gradually settle more & more to RT .

Cecum : cecal bud which appears at about **6th week** as a small conical dilation of the primary intestinal loop, is the last part of the gut to reenter abdominal cavity. \triangleright During this process the cecal bud

During this process the cecal bud
forms a narrow diverticulum called
appendix

Khadeeja.sami@uobasrah.edu.iq